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Recently, ball lightning models based on MHD force balance equation have been proposed. An upper bound

for the magnetic energy for these models is presented. The possibility of weakly ionized plasma models is

considered with estimates on lifetime and energy concent. The lifetime is found to be too short, if the

electron-neutral and ion-neutral effective collision frequencies behaver in the usual way. The possibilities to

get around these restrictions are briefly analyzed.

I. INTRODUCTION

In trying to construct a model for ball lightning one notes that while it is possible to
explain each individual property of ball lightning alone, it has been thus far too difficult to
have a single theory that would reproduce all relevant properties simultaneously. Perhaps
the most important things to explain are the energy storage mechanism and stability. In this
paper, models with magnetic energy storage (i.e. the energy of the ball is mainly the
magnetic field energy) are considered.

From the usual size of ball lightning and reported total energies [1] one can obtain an
order-of-magnitude estimate for the magnetic field. Doing this, one can find that fields of
one tesla or even more must occur inside ball lightning, if the assumption of magnetic
energy storage is made.

Recently, stationary axially symmetric solutions of the magnetohydrodynamic force-

balance equation ∇ p = jxB has been found2. The force balance equation can be reduced to a
partial differential equation of two variables containing two arbitrary functions of single real
argument. The analytical solutions presented correspond to a special choice of these
arbitrary functions in order to make the equation linear. However, there exists an upper
bound for the magnetic energy for all fields satisfying the MHD equations, as we now
show.

II. THE  MHD FORCE BALANCE EQUATION

Consider a stationary MHD plasma sphere imbedded in atmospheric pressure po. It is
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assumed that the exterior domain is non-ionized air. The gravity is neglected because
relevant magnetic fields are strong enough to yield a Lorentz force dominating the
gravitational force. The relevant equations are the force balance equation and Maxwell's

equations for the magnetic field2: 

∇ p = jxB,   ∇ xB = µoj,   ∇⋅ B = 0. (1)

Boundary conditions are:

B = 0,    p = po, ∂p/∂n = 0 at the boundary (2)

 The boundary is assumed to be a spherical surface of (finite) radius ro. The parameter ro
determines the length scale for the problem.

All solutions of Eq. (1) have the property that the total magnetic field energy has an
upper limit, if the solution is confined to a finite region of space. From the vector identity 

r⋅(∇ xB) xB = ∇⋅ (B(r⋅B)) + (1/2) B2 - (1/2)∇⋅ (rB2)(3)

we obtain the magnetic energy content of any volume V as

Wm = dr 1
2µo

V

B2 = dr r⋅j×B + 1
µo

V

dS⋅ 1
2
rB2 − B(r⋅B)

∂V

. (4)

The surface term vanishes because of boundary conditions (2). Then, by using Eq. (1), we
have

Wm =  dr r⋅∇ p
V

 = dS ⋅rp 
∂V

− 3 p V = 3(po − p ) V (5)

where we have <p> stands for the average pressure inside V. Again, we have used the
boundary conditions (2). Because the pressure is always non-negative, we get the value
3poV as an upper bound for ball lightning magnetic energy, where V is the volume of the

plasma sphere. This upper bound is of the same order as the energy released in an implosion

of a vacuum tube of volume V. Typical values for V range from 7.2 to 17 10-3 m3 [3],
which yields 2..5 kJ for the upper bound of energy. On the other hand, typical values for
the observed energies are from 12 to 30 kJ [3]. In extreme cases, the energies have been
reported to be as high as 1000 kJ [4].

We are now in the position to decide whether the MHD models can describe real ball
lightning or not (as well as total energy is concerned). The upper bound for MHD models is
about five times smaller than average observed value. At this stage, let us note that the real
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energy content for MHD models is probably clearly less than the upper bound, because,
apart from being non-negative, the pressure inside ball lightning is probably well above zero
the system to be stable at all. For the explicit solution, the average pressure inside MHD ball
lightning has been found to be only slightly (about 10 percent) smaller than the atmospheric
value [2]. If we adobt this as a general rule, the MHD energy will be about 50 times smaller
than the averabe observed ones.

From this we conclude that if we use the MHD model for high energy forms of ball
lightning, the principal energy storage is not the magnetic field. The MHD equations give no
hint of what that storage mechanism could be.

III. THE POSSIBILITY OF "LOWER TEMPERATURE" MODELS

In MHD models, it is necessary to assume that the ionization degree inside plasma

sphere is high. At atmospheric pressures, this will yield very high (104..105 K)
temperatures. Temperatures that high will probably lead to rapid energy losses due to

convection and radiation, giving rise to more rapid decay than the characteristic time τ =
µοσ ro2 , where σ is the conductivity of the plasma. Furthermore, the sensation of heat is

seldom present in ball lightning events [1].
If, on the other hand, the plasma sphere is only weakly ionized, the MHD description

is no longer valid, because collisions of plasma particles with neutrals has to be taken into
account. A weakly ionized plasma is described in the stationary state by the generalized
Ohm's law

j = σ||E'|| + σ
P
E'⊥  +  σ

H
 BxE'/B (6)

where σ||,  σP
 and σ

H
 are called the direct, Pedersen and Hall conductivity, respectively. E'

is the effective electric field, given in the stationary state by the expression

E' = −∇Φ  + vxB (7)

where Φ is the electric potential and v is the average velocity of neutral gas. The direct
resistivity is entirely due to collisions, and has the same value as the scalar conductivity if no

magnetic field is present. For simplicity, we assume σ|| = ∞. The Pedersen and Hall
conductivities are given by the expressions

σP = en
B

 νiΩi

νi
2 + Ωi

2
 - νeΩe

νe
2 + Ωe

2
(8)

σH = en
B

 - Ωi
2

νi
2 + Ωi

2
 + Ωe

2

νe
2 + Ωe

2
(9)
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where n is the electron (and ion) density and νi,e and Ωi,e are the effectice collision

frequencies with neutrals and Larmor frequencies for ions and electrons, respectivly.

Let us assume that νi and νe are of the same order, at least when compared with the

large ratio Ωe/Ωi, which is of the same order as the ion-electron mass ratio. Then it is

possible to consider three limiting cases: 1) large B when νi,e « Ωi « |Ωe|, 2) "intermediate"

B when Ωi « νi,e « |Ωe|, and 3) small B when Ωi « |Ωe| « νi,e. Analysis of the relative

importances of the Pedersen and Hall conductivities then reveals that the Pedersen
conductivity dominates the Hall conductivity in all cases except 2), when the Hall

conductivity dominates. More generally, if νi is not much smaller than νe, we obtain for the

relative importance of the two conductivities the expression

σH
σP

  =  1
Ωi
νi

 + νe

|Ωe|

(10)

Let us consider the Hall dominated case in some more detail. In this case the motion of
the electrons is determined by the magnetic field and they obey the ExB drift. Ions, on the
other hand, are not magnetized, i.e. their motion is collision dominated. Because of this, the
electric current is carried mainly by electrons, which means that

j = -enve = en
B2

 B×∇Φ (11)

in the stationary state. In addition, a magnetic field aligned current j|| may flow. From IV

Maxwell's equation it then follows, when σ|| = ∞, that

B×∇× B = µoen ∇Φ . (12)

On the other hand, it is easy to see that if B satisfies (12), then there exists such j|| that
Maxwell's equations are satisfied (and Bxj|| = 0). 

IV. THE COLD PLASMA BALL LIGHTNING

To get rid of the upper bound associated with the MHD equations, we suggest the
"cold" plasma model. In the stationary state, this is described by a set of equations

analogous to Eq (1), but the term ∇ p replaced by (1/c2) (∇ 2Φ) ∇Φ , where Φ is the electric

scalar potential. Redefining Φ so that c=1, we have the system of equations

B×(∇× B) = (∇ 2Φ)∇Φ ,            ∇⋅ B = 0 (5)
We have assumed that the pressure term is negligible compared with the potential
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term. This equation is rather similar in structure to the corresponding MHD equation (1). Let
us assume that the plasma ball is axially symmetric and let us use spherical coordinates

(r,θ,ϕ). Then, we can write B in the following form, which is automatically divergence-
free:

B(r,θ) = 1
r2 sin θ

 
∂

 ∂θ
 A(r,θ) er  − 1

r sin θ
 
∂
∂r

 A(r,θ) eθ  + 1
r sin θ

 bϕ(r,θ) eϕ

(6)

Then the ϕ-component of the force balance equation implies that Φ(r,θ) = Φ(A(r,θ)) and

bϕ(r,θ) = bϕ(A(r,θ)). So, there are two arbitrary functions of one real argument also in the

cold plasma case. When these relations are substituted to the two remaining components of
the force balance equation, it is found that the resulting equations are in fact equivalent.

Thus, we obtain a single equation for the flux function A(r,θ): 

r2 sin θ (1 − r2 sin2 θ γ(A)) ∂r
2A + 1

r2
 ∂θ

2A

         − 2r3 sin3 θ γ(A) ∂rA − cos θ  1 + r2 sin2 θ γ(A)  ∂θA

         − 1
2

r4 sin3 θ γ'(A) (∂rA)2 + 1
r2

 (∂θA)2 + r2 sin θ β'(A) = 0 (7)

where the dot denotes differentiation with respect to the argument, A = A(r,θ), and we have

defined β(A) = (1/2) bϕ(A)2 and γ(A) = Φ'(A)2. Before Eq (7) can be simplified, some

models for β(A) and γ(A) have to be assumed. From Eq. (7), it is evident that the only case

when this equation becomes linear is when γ does not depend on A, i.e. the quadratic terms

are absent. When this is the case, it is also evident that β'(A) must be a linear function in
order to make the equation linear. We assume the following model:

β(A) = (1/2) c2 A2

γ(A) = a2 (8)

where c and a are constants of dimensionality inverse length (c has nothing to do with the
velocity of light which has been put to unity). Eq. (7) becomes 

(1 − a2 r2 sin2 θ )(∂r
2A + 1

r2
 ∂θ

2A) − 2a2 r sin2 θ ∂rA

− cos θ
r2 sin θ

 1 + a2 r2 sin2 θ  ∂θA + c2A = 0. (9)

Unfortunately, this equation is not separable, and thus analytic solution is hardly possible.
However, we can calculate from Eq. (9) the asymptotic behaviours when ar » 1 and ar « 1,
respectively. When this is done (by the method of separation of variables), one notes that
Eq. (9) always has solutions that go to zero as r approaches infinity, and that the magnetic
field as well as the scalar potential remain finite at the origin. 
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IV. CONCLUSION

We have presented an upper energy limit for MHD ball lightning models. We have
also introduced the "cold" plasma model for ball lightning and analyzed the equations in
certain special cases. It has been found that the equation has solutions that behave
asymptotically in the right way. In principle, one can construct "cold" ball lightning models
with arbitrarily high energy content. The stability of "cold" models remains to be studied.
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