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PREFACE

This document is the final report of the ESTEC/Contract No.11974/96/NL/JG(SC)
"Study of plasma and energetic electron environment and effects (SPEE)". The docu-
ment summarises the results of the project in a self-contained manner. In addition to this
document the different work packages produced Technical Notes and URD/SRD listed
below which are available upon request from ESTEC and at the WWW-server of this
project: http://www.geo.fmi.fi/spee/docs/

 The goals of the present study were to
– gain better understanding of spacecraft charging phenomena
– investigate the forecasting of satellite anomalies based on anomaly database
– summarise the European capabilities in the fields related to space weather and

determine requirements for establishing a European space weather programme.

The study was organised under the leadership of the prime Contractor, the Finnish
Meteorological Institute, Geophysical Research (FMI/GEO), with two units of the
Swedish Institute of Space Physics, Uppsala (IRF-U) and Kiruna (IRF-K) as
Subcontractors. In addition to the overall management, FMI/GEO was responsible for
the third of the items above. IRF-U took care of the first item (section 4) and IRF-K the
second item. The Technical Officer at ESTEC was A. Hilgers. The Project Manager
was H. Koskinen from FMI/GEO and the University of Helsinki.

Relevant documents from individual work packages:

WP-110-TN: Charging events identification and case study of a subset of them
WP-120-TN: Modelling of Freja observations by spacecraft charging codes
WP-130-TN: Analysis of Freja charging events/Statistical occurrence of charging 

events
WP-210-TN: Spacecraft anomaly forecasting using local environment data
WP-220-TN: Spacecraft anomaly forecasting using non-local environment data
WP-230-TN: Spacecraft anomaly forecasting using heterogeneous environment data
WP-310-TN: State of the art of space weather modelling and proposed ESA strategy
WP-320-URD/SRD: Requirements for modelling tools for space weather programme
WP-330: WWW-server:http://www.geo.fmi.fi/spee
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ABSTRACT

Space weather is a new concept addressing the electromagnetic and charged particle en-
vironments of the Earth and their effects on space-borne and ground-based technolog-
ical systems. In this investigation spacecraft charging phenomena on high-inclination
low Earth orbit (PEO/LEO), satellite anomalies on geostationary orbit (GEO), and
global space weather modelling have been investigated.

The PEO charging was studied using the database of the Swedish-German Freja
satellite. While the spacecraft was successfully designed to be electromagnetically clean
and highly conductive, it, nevertheless, experienced charging events of negative poten-
tial when it crossed the auroral electron beam. The largest potentials were estimated to
exceed –2000 V.  Most, but not all, charging events took place in eclipse. Furthermore,
all charging events took place during winter months. Several severe payload operation
problems occurred during charging, and the high charging levels are large enough to
cause arcing effects. This suggests that auroral induced charging may be of concern for
future spacecraft operation and design.

Several of the Freja charging events were modelled using charging codes. Even
after careful modelling of the spacecraft shape and surface materials as well as the
observed electron spectra it was found that the charging levels could not be modelled
well, especially the large charging levels caused by intense 10-keV electron pre-
cipitation were not possible to achieve. This study gives useful hints for further de-
velopment of the charging codes to account for auroral plasma environment.

The satellite anomalies on GEO were analysed using anomaly databases from
the European meteorological satellite Meteosat-3 and the Swedish telecommunication
satellite Tele-X.

Meteosat-3 carried an instrument for local observations of electrons in the range
43–300 keV. These observations were used to study how well neural networks could be
trained to predict observed satellite anomalies. After treating the particle data with prin-
cipal component analysis the networks were found to train well. Requesting that non-
existence of anomalies during next 24 hours had to be predicted at least at 80% accu-
racy about 50% of anomalies were possible to predict based on the local input data.

Tele-X, as most GEO satellites, did not carry instruments to study the local
space weather conditions. Both Meteosat-3 and Tele-X anomalies were studied using
non-local data including energetic particles (E > 2 MeV) from geostationary GOES-6,
GOES-7, and GOES-8 spacecraft and ground-based magnetic activity indices Kp and
Dst. In this study several variations of neural networks were tested. It was found that the
best predictions were obtained using the Kp index, the best predictions for Meteosat
reaching about 80% for both anomalies and non-anomalies. The Dst showed to be a less
successful predictor. The non-local electron data was not found as useful, especially due
to its lower accuracy to predict non-anomalies.

Both local and non-local input data were combined in a study to search for a sat-
ellite anomaly index. It was found that combining the non-local and local observations
reasonably good anomaly indices can be constructed. However, the index used by satel-
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lite operators must be adjusted for each satellite individually. In addition to local meas-
urements of high-energy electrons, simple lower-energy detectors in the 10-keV range
are expected to be useful.

State of art of  space weather modelling capabilities worldwide and in Europe
were investigated. While it is clear that in the US space weather activities are farther
ahead than in Europe there are certain fields where Europe is strong and it is possible
and even desirable to formulate a European space weather programme built on these
strengths.

The European solar-terrestrial physics community has strong scientific compe-
tence in the fields relevant to space weather modelling and forecasting. On the techno-
logical side Europe has good expertise in modelling of the effects of space environment.
However, the cross-fertilisation between scientists and engineers is much weaker in
Europe than in the US.

In the field of space weather modelling Europe has already established impres-
sive activities in the modelling of energetic particles and their effects in the ring current
and radiation belt regions of the inner magnetosphere. Also in the field of applying
modern analysis methods, such as neural networks, Europeans are at high international
level. Furthermore, the Solar and Heliospheric observatory (SOHO) has given European
scientists leading position in the studies of the solar origins of space weather. Joining
the European expertise in global magnetospheric dynamics, it is quite feasible that com-
petitive global magnetohydrodynamics (MHD)-based modelling activity could be initi-
ated in Europe.

User and software requirements for a physics-based space weather modelling
tool capable of specifying the conditions in the inner magnetosphere were investigated
in the form of User and Software Requirements Document. The most visible output of
the project is an open World Wide Web space weather server installed at the Finnish
Meteorological Institute and at ESTEC (http://www.geo.fmi.fi/spee).

A specific weakness in Europe is that the resources are scattered and it is un-
likely that any single group or country could form a significant independent space
weather activity. It is suggested that

1) The ESA Science Programme should take space weather on its agenda

2) A formal Science/Technology Interdisciplinary Space Weather Programme that
should report to SPC/SSWG and IPC should be initiated

3) ESA should initiate work to establish a European Space Weather Data and
Model Centre (either centralised or distributed with a central core). This Centre
should have as its goal to become a European Data, Model, and Specification
Centre, and it should look for a workable solution for a full-scale European
Space Weather Centre.
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1. INTRODUCTION

The plasma environment, especially energetic electrons in the upper atmosphere and in
the magnetosphere surrounding the Earth form a hazardous environment to man-made
Earth-orbiting satellites. As more and more everyday functions rely on satellite opera-
tions, knowledge of the plasma and energetic particle effects on technological systems,
including reliable modelling and forecasting methods, has become increasingly impor-
tant. This has led to a number of initiatives world-wide toward more coherent and goal-
oriented programmes often referred to as Space Weather programmes.

For both spacecraft engineering and operations, a key question is when, where,
and why satellite charging and other environment-related anomalies occur, and how
hazardous these phenomena may be. Although much work has been devoted to the un-
derstanding of the charging and other anomalous phenomena, and to protection against
them, they still take place, sometimes with serious consequences. The development of
smaller and more sensitive electronics and, most likely, the increasing use of spacecraft
in the most hazardous orbits crossing high latitudes and radiation belts point out the ne-
cessity for intensified effort to understand both the origin and effects of these events.

In the present project the recently acquired database from the Swedish Freja
mission has been extensively used for studies of charging phenomena. Although Freja
was electromagnetically very clean, it experienced a relatively large amount of charging
events. Because the spacecraft was specifically designed to study the electromagnetic
environment with a several electric probes and particle detectors, its data set allows for
both detailed single event studies and statistical considerations. It is also important that
Freja's inclination of 63 degrees brought it above the auroral zone from where we have
much less experience of charging effects than from geostationary orbit. This together
with the altitude range of the Freja orbit (600–1700 km) make this particular study es-
pecially relevant for future high-inclination spacecraft. When the Freja charging events
were studied with the help of charging codes NASCAP and POLAR, it was found that
the high-latitude charging phenomena pose considerable challenge for understanding
and, consequently, further development of modelling tools for charging is needed.

Before global "physics-based" models with satisfactory advance prediction, i.e.,
forecasting, capability will be usable, and most likely also thereafter, an alternative ap-
proach to predict the occurrence probability of satellite anomalies is to use information
on past anomalies and conditions under which they took place. The commercial space-
craft operators are often reluctant to release their anomaly data bases, but for this study
the Meteosat-3 and Tele-X anomaly data were made available. The anomaly data were
related both with the local observations onboard the spacecraft in question and/or with
non-local data specifying global solar-terrestrial conditions. In this study these data sets
were thoroughly analysed using modern neural network techniques. The results were
encouraging showing that it is possible to develop a spacecraft anomaly predictor for
such phenomena that depend on the state of the magnetospheric plasma. Unfortunately,



SPACE WEATHER AND INTERACTIONS WITH SPACECRAFT

SPEE FINAL REPORT            Page 12

a large number of anomalies are related to cosmic rays whose appearance is not predict-
able in the same way.

However, without extensive further development of tools for global modelling
of the geospace dynamics, the only way of avoiding hazards due to space environment
effects is to build space weather-proof spacecraft which in many cases would require
extensive over-design with associated costs. During past few years the development of
useful models has advanced significantly due to rapidly increasing computer resources
and improved large-scale models for the interactions between the upper atmosphere, the
ionosphere, the magnetosphere, and the solar wind. Especially, in the United States a
considerable effort has been focused to the creation of truly global space environmental
modelling with forecasting capability within the framework of the National Space
Weather Program.  Although Europe has good resources in this field both in terms of
intellectual capacity and computer facilities, the resources are scattered and there evi-
dently is a need for a more concentrated European effort. European resources and op-
portunities were studied as a part of the present project.

Last but not least, it is important that the widely scattered space community in-
terested in the information of this study gets an easy access to its results. As a visible
outcome of this project, a public World Wide Web (WWW) server has been developed
and installed at ESTEC with a mirror server at the Finnish Meteorological Institute. The
public parts of the server contain detailed information of European space weather re-
sources, links to the relevant Web servers world-wide, samples of relevant data sets, and
means of retrieving data from various data bases. WWW is a continuously evolving
structure where links change and become obsolete. This particular is planned to be
maintained and updated over several years to come.
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2. SPACE WEATHER

2.1.    What is space weather?

Space weather is a relatively new concept and as such its content and meaning are still
under evolution. Quite generally it is understood as the time-variable conditions in
space environment that may damage space-borne or ground-based technological sys-
tems and, in the worst case, endanger human health or life. While this definition is quite
negative, the physical phenomena relevant for space weather are extremely interesting
and under active basic research, and also include positive effects such as the beautiful
auroral displays in the polar regions. The most important social and economical aspects
of space weather aim at avoiding the consequences of space weather events either by
system design or by efficient warning and prediction systems allowing for preventive
measures to be taken.

magnetopause

closed
field-lines

geostationary
distance

radiation
belts

solar
wind

polar cap
(open tail lobes)

SUN

Figure 2.1. Main physical domains of space weather

The ultimate source of most space weather phenomena is the Sun and a control of space
weather effects requires thorough understanding of Solar-Terrestrial Physics (STP), the
physics of the intercoupled plasma environments of the solar wind, the magnetosphere,
the ionosphere, and the atmosphere. Although closely linked, the distinction between
space weather and STP is the more practical flavour of space weather research.  Thus, if
needed, a distinction between these concepts can be made: Basic research in the field of
STP is necessary to deal with space weather, whereas space weather research is an ap-
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plication-oriented discipline stimulating research of various problems in STP. This dis-
tinction has been implicitly assumed in the preparation of this Report, although we do
not claim that it would be fully adapted by all parties in the space weather field. How-
ever, any space weather activity must ultimately address the needs of the applications
community, e.g., engineers and operators. Identification of user needs is paramount but,
as yet, one of the most unclear parts of the activity.

2.2.    What are space weather activities?

Space weather has many similarities with atmospheric weather; thus the design of future
space weather activities will, to a large extent, utilise the experience from meteorologi-
cal services. This is already now a fact at Space Environment Center (SEC) of NOAA,
and the 55th Space Weather Squadron of the US Air Force, both in Colorado, USA.

However, there are important differences between the atmospheric and space weather
systems:
1) While many meteorological processes are localised and it is possible to make

good limited-area weather forecasts, space weather is always global in the plane-
tary scale. This arises from the large spatial scale-sizes of the solar-terrestrial
plasma systems and the long correlation times of these plasmas. The most im-
portant and most dramatic effects originating from the Sun disturb the Earth's
plasma environment, the magnetosphere, which responds to these disturbances
globally.

2) Space weather events occur over a wide range of time scales: the entire magne-
tosphere responds to the solar-originated disturbances within only a few min-
utes, global reconfiguration takes a few tens of minutes, and sometimes extreme
conditions may remain for much longer periods. The fastest signal in the global
magnetospheric system is associated to the so-called Storm Sudden Com-
mencement (SSC): ground-based magnetometers react immediately to a signifi-
cant change in the magnetopause current system when a strong solar wind dis-
turbance hits the magnetosphere. At the slowest end the enhanced fluxes of en-
ergetic particles in the radiation belts decay in time scales of days, months, or
even years.

3) Our means to monitor the space weather are much more limited than our ability
to install weather stations on the Earth's surface: Our prediction schemes must
be capable of functioning with input from only a few isolated measurement
points in the upstream solar wind conditions and magnetospheric parameters.
These aspects are discussed in more detail below in the section dealing with the
physics requirements for space weather modelling. As a consequence of these
properties, successful space weather activities are performed on a global scale,
merging space-borne and ground-based observational capabilities.
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There is no doubt that at present the US is further ahead in space weather activities than
other countries: They have the largest number of spacecraft, their scientific STP com-
munity is the largest, and they already have some operational space weather activities.
This is demonstrated by the documentation of the National Space Weather Program
(NSWP), which is a result of an initiative from the American space science community
in 1993. The Strategic Plan of the NSWP was published in 1995 and the Implementa-
tion Plan in 1997.

The European activities and capabilities for an extended European approach are
analysed in Chapter 6 below. At present, while Europe has a strong scientific commu-
nity in the field of STP, there are only few attempts toward space weather, and the re-
sources are scattered to relatively small groups in different countries. Furthermore,
Europe is not as independent in space-borne facilities as the US is. The US STP com-
munity has always maintained synergies with the applications community. Space physi-
cists often act as consultants on space environment issues for aerospace companies and
military organisations. This kind of ties are much weaker in Europe.

As space weather is a global phenomenon, it is not clear that Europe should aim
at full autonomy in this field. Actually, although the US NSWP has a strong national
flavour, there is a general understanding that the programme must be widened to be-
come international. Most of the present space weather activities are driven by the scien-
tific community and the awareness of the users is only beginning to emerge. When the
user awareness increases and more space weather tools and products are developed, the
needs to protect national (or e.g., ESA) technological assets and commercial interests
move also the space weather modelling away from the scientific openness. This is one
reason why ESA should have a clear space weather policy to support the European
space weather activities in their integration to the international space weather commu-
nity.

On the truly international level there actually already exists an organisation that
covers most of the world, The International Space Environment Service (ISES) (see:
http://www.sel.bldrdoc.gov/ises/ises.html ). ISES is a joint service of URSI, IAU and
IUGG and a permanent service of the Federation of Astronomical and Geophysical Data
Services (FAGS). There are ten Regional Warning Centres (RWC) scattered around the
globe. These centres are located in Beijing (China), Boulder (USA), Moscow (Russia),
Paris (France), New Delhi (India), Ottawa (Canada), Prague (Czech Republic), Tokyo
(Japan), Sydney (Australia), and Warsaw (Poland). A data exchange schedule operates
with each centre providing and relaying data to the other centres. The centre in Boulder
plays a special role as "World Warning Agency", acting as a hub for data exchange and
forecasts. For some reason the awareness of ISES among the present day space weather
activists has remained smaller than expected, regardless of the fact that ISES has
organised well-attended Solar Prediction Workshops, the latest one in Japan 1996.

Of the European ISES Centres the centre in Paris is the most active in space-
based applications, in particular providing services for spacecraft orbits, altimetry, as
well as launch and re-entry calculations (see: http://previ.obsem.fr/previ).
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2.3.     What is a space weather product?

A way of categorising space weather can be based on the warning time allowed for us-
ers to react to the possible hazard.

Space weather "forecasts", like their atmospheric weather counterpart, cover a variety of
time scales and levels of accuracy. The long-range solar cycle forecasts are based on
models of solar activity, but lack accuracy in timing of actual events. Shorter term fore-
casts may cover a period from several hours to a few days, and are based on solar and
solar wind observations, in-situ magnetospheric data, and modelling.

"Warnings" are needed for events that have the potential to harm satellites, equipment,
and humans in near-Earth space environment and on the ground. The warnings are
based on solar observations and modelling techniques for prediction of geomagnetic
activity, and are given less than 24 hours in advance, often only minutes in advance.

"Nowcasts" are based on in-situ real-time data assimilation techniques and models ca-
pable of running in real time. They provide global information about the state of the
magnetosphere based on measurements in different regions of space.

"Post-event analysis" is used to assess the possible factors that may have caused opera-
tional anomalies. Post-event analysis utilises all available information of a given event
to gain an accurate understanding of the sequence of events. This is valuable both for
assessing damage and for future improvements of spacecraft design.

2.4. Who are the users?

The identification of users of space weather products or space weather modelling is one
of the most critical issues for the development of space weather activities. This is partly
related to the fact that until useful products become available, there will be no well-de-
fined market for them. Most likely the awareness of the potential users will develop in
parallel with the developing space weather services. Both sides of the development, i.e.,
products and the market, gain if the space weather community gives a high priority to
education and public outreach. Also in this field the US space weather community is far
ahead Europe. NOAA/SEC organises regular user conferences where their needs and
the development of scientific models to applications are discussed.

The needs of the various users, actual or potential, are very variable, and, for the
time being, rather poorly specified. Perhaps the most clear end-users of present space
weather products are spacecraft engineers and spacecraft operators. The spacecraft de-
velopment is based on accumulated knowledge of space environment and its effects. It
is important that both non-critical and, particularly, hazardous satellite anomalies are
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carefully analysed using the best available modelling tools. Spacecraft operators need
information to avoid critical manoeuvres during critical conditions. Spacecraft launches
may be postponed due to bad space weather conditions and the re-entry of Space Shuttle
depends on the atmospheric drag conditions.

Other users are telecommunication operators, users of the global positioning
system (GPS), electric power industry, etc. Commercial airlines must be careful not
only with the radiation doses on their crew and passengers but also consider the poten-
tial radiation damages to the increasingly miniaturised electronic components. Often the
end-user is just interested in receiving useful information from a space weather service
provider. There is, however, a large group of users who wish to get pre-processed data
for further modelling work. For example, a spacecraft engineer may want to analyse a
spacecraft failure by varying the input parameters around the state of the radiation belts
specified by a space weather centre. Also the scientific community sees themselves of-
ten as users because efficient data dissemination and modelling services are useful for
them in one of the most tedious steps of scientific analysis, namely rapid access to data
and model results.

With all hazards the insurance questions are important. With society's increasing
dependence of space technology the insurance industry is becoming an increasingly im-
portant customer of space weather services. Due to the very high unit price of spacecraft
the correct risk analysis is important for the insurance companies as well as their cus-
tomers.

Another contributing factor is that the space weather models are of very variable
size and level of sophistication, and will remain so. The most extensive physics-based
models will always be run in supercomputers, and the most advanced models will fol-
low the most advanced computer evolution. On the other hand, there are a great number
of simpler models that can be used locally by the users themselves. Examples of these
are various artificial intelligence systems, such as neural networks or non-linear filters.
The users can run these models given that suitable interfaces and input data bases are
developed.
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3. IMPACT OF SPACE WEATHER EFFECTS ON TECH-
NOLOGICAL SYSTEMS IN SPACE AND ON GROUND

Space weather effects change the Earth's plasma environment on time scales varying
from minutes to days and weeks. Dynamic magnetospheric processes may enhance the
existing energetic particle populations to levels that are hazardous to the electronics on-
board Earth-orbiting satellites. Solar activity and particle acceleration through cosmic
processes create very energetic ions that can enter through the magnetospheric shield,
again posing a hazard to both humans and technological systems in space.

Space weather effects are by no means limited to space-borne systems. The
strong currents in the auroral region induce large Geomagnetically Induced Currents
(GIC) in the long power lines. The increased and irregular plasma density in the iono-
sphere disturbs high-frequency (HF) and very-high-frequency (VHF) communications,
the future satellite telephone communications, and satellite-based positioning systems
(e.g., GPS). Furthermore, increased radiation doses on electronics and human beings on
high-altitude flights, especially over polar regions can reach harmful levels.

3.1.    Examples of hazardous space weather events

3.1.1.  Historical examples

The first space weather events reported to harm technological systems took place
around 1850 when electric telegraph communications were disturbed and in some cases
completely stopped during strong auroral activations (Prescott, 1860). For a long time
the telegraph and later the telephone communications were the most susceptible techno-
logical systems for space weather problems. The first reported effect on power systems
took place on March 24, 1940 (Davidson, 1940). A great geomagnetic storm caused
voltage dips, large swings in reactive power, and tripping of transformer banks in the
US and Canada. During the same event 80% of all long-distance telephone connections
out of Minneapolis, Minnesota, were out of operation.

A widely-known event took place on March 13, 1989, when a severe geomag-
netic storm caused the failure of a complete electric distribution system in Quebec,
Canada. Several million people lost their electric power for up to 9 hours and the esti-
mated peak power lost exceeded 20 GW. The effect spread throughout the network very
rapidly, from the first signs of problems to the system collapse in about 90 seconds. At
the same time HF communications were blocked world-wide, whereas VHF signals
propagated unusually far creating interference problems. A Japanese communication
satellite lost half of its redundant communication circuitry, a NASA satellite dropped
about 5 km in altitude due to increased atmospheric drag, and several other satellites
experienced various types of upsets.
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3.1.2.  Recent satellite failures

As a consequence of a high-speed solar wind stream impacting the Earth's magneto-
sphere on January 20, 1994, at 1735 UT, the Anik E-1 spacecraft at geostationary orbit
suffered an operational anomaly causing a loss of attitude control. Telesat Canada oper-
ators were able to finally switch to the backup momentum wheel controller and resume
reasonably normal operations. The Anik E-2 satellite also experienced failure of its
momentum wheel control circuitry at 0210 UT the following day. Anik E-2's backup
circuitry was found to be non-functional, and therefore normal operational control of the
spacecraft was lost. TV, radio, telephone, and scientific operations within the American
continent were affected for hours to days by these spacecraft anomalies: The news,
weather, and entertainment programming were affected, daily newspapers' information
gathering systems were inoperative, and telephone services were interrupted in Canada
(Baker, 1996).

During an extended (about two weeks) period of greatly enhanced electron
fluxes present in the outer trapping region, the same Anik E-1 communication satellite
suffered a severe operational problem on 26 March 1996. The satellite lost all power
from its south solar panel array when the array was effectively disconnected from the
satellite payload at 2047 UT. The 50% power loss reduced the spacecraft's capacity sig-
nificantly. The lost communication capability affected a broad range of video, voice,
and data services throughout North America. Service to Telesat Canada customers was
restored after about six hours by link switches to other spacecraft and by using backup
systems such as fibre optics ground links. During the same period, several other space-
craft operators also reported problems. Direct measurements showed that the opera-
tional anomalies were due to deep dielectric charging caused by elevated fluxes of very
high-energy electrons  (Baker et al., 1996).

A coronal mass ejection emerging from the Sun formed a magnetic cloud, which
impacted the Earth on January 10, 1997. On early morning of January 11, 1997, AT&T
lost contact with its Telstar 401 satellite.  Telstar 401, one of the two Skynet satellites,
was fully functioning before the incident. The other, Telstar 402R, took re-routed net-
work signals right away following 401's difficulties. Satellites like the Telstars trans-
pond TV programmes, telephone calls, and computer data. The magnetic cloud caused
an exceptionally strong enhancement of relativistic electron fluxes in the Earth's mag-
netosphere detected both by geostationary and low-altitude polar-orbiting satellites.
These electrons remained within the radiation belts for over a week after the incident.
Evidence suggests that the increased levels in the radiation environment were connected
to the malfunction of the AT&T Telstar satellite although it has remained unclear what
the immediate cause of the failure was.
(see http://www-istp.gsfc.nasa.gov/istp/cloud_jan97/event.html)



SPACE WEATHER AND INTERACTIONS WITH SPACECRAFT

SPEE FINAL REPORT            Page 20

3.1.3. Other effects on spacecraft

Interference and other hazards (SEUs, problems with star tracking, etc.) are much more
common than the most publicised examples discussed above. Examples of space
weather related problems on European satellites include radiometer stops of Meteosat,
SEUs on most satellites (ISO, Hipparcos, ERS, SOHO, etc.), ISO experienced problems
in its star tracker, and so on. Exact information on anomalies is difficult to get. The
commercial companies consider this information confidential but even inside space or-
ganisations there is reluctance to admit problems. Another problem is that there are no
standards how to collect anomaly information. At the beginning of a spacecraft mission
the operators report on all anomalies but when more experience of the spacecraft be-
haviour has been gained, the less harmful anomalies are not always recorded. However,
when anomaly information has been available, various effects have been traced directly
to space weather events, thus it would be useful to organise homogeneous procedures to
gather and report on all anomalies. In Chapter 5 below we discuss the determination of
empirical anomaly indices based on extensive anomaly databases from two operational
spacecraft Meteosat-3 and Tele-X. Another useful reference is Wrenn and Smith (1996)
that includes a table of reported anomalies due to electrostatic discharges (ESD) from
47 spacecraft.

3.2.  Spacecraft charging and satellite anomalies

Spacecraft charging and satellite anomalies are closely linked to each other. While
spacecraft charging is a general physical phenomenon that cannot be totally avoided, it
does not necessarily lead to anomalous behaviour of the spacecraft. On the other hand,
damaging anomalies can be due to excessive charging.

Satellite anomaly is here defined as a change in spacecraft behaviour for which
the spacecraft was not designed and which is not caused by an operational error. This
can be anything from a bit flip to a total malfunction of the spacecraft. In the early days
of space activities, some anomalies on geostationary (GEO) spacecraft were linked to
the photoemission of the sunlit surfaces. With this knowledge new design recommenda-
tions for spacecraft were made. In plasmas where the local Debye length is larger than
the spacecraft dimensions (such as in GEO) the main recommendations are proper
grounding of the satellite and use of conductive surface materials. These recommenda-
tions can minimise or prevent accumulation of charges, which can generate a potential
difference between the sunlit and the shaded side of the spacecraft (Frezet et al., 1989).

3.2.1. Spacecraft charging

The accumulation of charges on a spacecraft depends on the charge transport (currents)
to and from a surface (including charge transport in the structure). Low energy particles
from the plasma are stopped on the surface (photo emission, ionospheric plasma), high
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energy particles penetrate the surface and can create secondary particles that can deposit
charges somewhere else in the spacecraft system. Internal charging takes place when
high energy particles penetrate the spacecraft and deposit charges inside the spacecraft.
Dielectric charging occurs when a potential has been built up in a dielectric material.
Surface charging refers to the surface of the spacecraft and interacts with the surround-
ing plasma. If one wants to monitor the low energy plasma surrounding the spacecraft
these measurements are affected by surface charging which can lead to either shielding
off or acceleration into the spacecraft of the low-energy charged particles.

Motion of a body across a magnetic field induces an electric field E = – V  x B
(where V is the velocity and B is the magnetic field). If the body has low conductivity,
this can create a potential difference between two positions on the spacecraft. This ef-
fect implies that large objects in strong magnetic field never can have the same potential
at all points on the spacecraft without active potential control.

When the accumulation of charges at a location is more rapid than its diffusion,
discharges can occur. This can take place between two points on the spacecraft or be-
tween spacecraft and space. At a threshold where the discharges occur charges will
move between the two points giving rise to a current, followed by an electromagnetic
disturbance. The acceleration of particles (a current peak during a short time interval)
can cause an anomaly that may damage the spacecraft. Light flashes, such as arcs on
solar arrays (between interconnections and space) are commonly observed discharge
phenomena. Small discharges cannot be detected when the spacecraft is in space but
during the Meteosat-1 ground tests small discharges on the spacecraft surface were ob-
served as frequently as one discharge per second (Hoge, 1980). One problem with the
discharges is that they may drain current from the spacecraft system and cause current
spikes on the electronics bus. The discharges do not only damage the electronics in dif-
ferent ways but they also damage parts by sputtering the surface material to space and
thus change the material properties. Discharges can also lead to degradation, to loss of
solar strings, to loss of electronic components, and to changed thermal properties. Dis-
charges may stop after a while in space due to changes in the material caused by the
discharges.

Energetic radiation also affects the spacecraft material in different ways, de-
pending on energy and material properties. Radiation on a material causes ageing,
changes in thermal and resistive properties, darkening of glass etc. The effects shorten
the mission lifetime depending on the total dose the spacecraft is exposed to. These en-
vironmental effects on the material have to be taken into account in spacecraft design.

3.2.2. Satellite anomalies

In the months immediately following the launch of a new spacecraft numerous anoma-
lies are usually reported. Later, as knowledge on the spacecraft behaviour improves, the
number of reported anomalies drops dramatically (Wrenn, 1995), leaving a significant
number of spacecraft anomalies associated with charged particles in the magnetosphere.
Possible regions and environmental effects, which may affect spacecraft, are: the neutral
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thermosphere drag, plasma particles, meteoroids and spacecraft debris, solar radiation,
cosmic rays and geomagnetic phenomena. These are often related to each other and de-
termining the cause of a given event is often difficult (James et al., 1994). Spacecraft
charging, high-energy particles and debris are the three main causes of anomalies.

When an anomaly occurs it is important to determine if it is caused by a com-
mand from the ground or by interference aboard the spacecraft. Sometimes failures oc-
cur when two parts of a system interact in a way that cannot be seen when they are op-
erated separately. During 1993-95 twenty environmentally induced anomalies onboard
NASA Goddard spacecraft were reported (Goddard Space Flight Center, 1994; Remez
and McLeod, 1996; Walter, 1995). While many more anomalies occur during the first
few months of spacecraft operation, the more ”interesting” (for this type of study), and
possibly more damaging, cases occur once the educational process is completed and the
spacecraft is in normal operation. For the Goddard spacecraft more than 400 anomalies
occurred in the 3 years of operation but most of these could be identified either as part
of the process of learning to control and use the spacecraft or as single event upsets
(SEUs) from single high energy particles. Sometimes anomalies can occur due to the
RF environment (Leach and Alexander, 1995). For example, NOAA-11 had phantom
commands due to a noisy VHF-communication with the spacecraft. On NOAA-12
phantom commands occurred when the vehicle flew over commercial VHF-distur-
bances in Europe.

NASA maintains a spacecraft anomaly data base (Wilkinson, 1994). NASA’s
environment data can be accessed through GOIN and NASDA. On internet anomaly
data can be found at http://envnet.gsfc.nasa.gov/. IASB in Belgium provides informa-
tion about environmental effects on spacecraft as a part of an ESTEC Contract
(http://www.spenvis.oma.be).

3.2.3. Causes of spacecraft anomalies

Spacecraft anomalies can have different origins. A short description of some of them is
given below.

The vacuum environment
When a spacecraft is launched significant outgassing is taking place that can give rise to
anomalies. UV-degradation of different materials can also take place above the atmo-
sphere. We do not further deal with these effects.

The neutral environment (chemical and drag)
The neutral environment extends far outside the Earth's magnetosphere. However, the
effects of chemical (mainly atomic oxygen) interaction with spacecraft material and
drag forces occur mainly at low heights (below 150 km), where the particle densities are
high enough. The neutral environment is not considered in this study.
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Plasma interactions
Charges accumulated on spacecraft surfaces (e.g., Garrett, 1981; Garrett and Whittlesey,
1996) can cause potential differences that can impact spacecraft systems through arcing.
A discharge can occur between the surface and the surrounding space plasma, between
different parts on the surface, or inside materials of the satellite. A current spike, during
discharge, can generate electromagnetic radiation that can penetrate the spacecraft
and/or damage the surface and electronics directly. Discharges at the edges of solar cells
are common (Tribble, 1995).

Potentials can be generated by the V  x B effect, depending on the spacecraft size
and the local plasma density and temperature. Other sources for are currents to and from
the spacecraft such as photoelectron emission, auroral electron beams, hot plasma
injections during magnetic storms or substorms. Charges mainly accumulate at sharp
edges and the amount of chargind depends on the surface properties.

On low-altitude orbits outside the auroral region the level of surface charging is
usually small and voltages between different surfaces on a spacecraft are usually less
than 10 V (See Chapter 4). On auroral field lines the charging may become 100 V or
more and voltages above 1000 V may occur (Garrett and Whittlesey, 1996) due to, e.g.,
the auroral electron beams (Stevens and Jones, 1995; Chapter 4, below).

There is a strong seasonal variation in spacecraft charging. This may be
associated to the orientation Earth's magnetotail with respect to the plane of the
geostationary orbit, or to the known seasonal dependence of substorm activity, or both.
One of the phenomena associated with spacecraft discharges are phantom commands. In
the GOES spacecraft practically all phantom commands occurred between 23:00 and
08:00 local time. They peaked in spring and autumn.

Radiation (internal)
High-energy particles can penetrate the surface, interact with the material, and deposit
their energy in the interior of the spacecraft. How the energy is deposited and what kind
of interactions that takes place depends on the radiation type (photon, electron, ion, or
neutral particle), the energy of particles and the material where the energy is deposited.
The energy lost by the particle per unit length is referred to as its stop power or its linear
energy transfer (LET) (Robinson et al., 1994). The LET depends on the number of in-
teractions the penetrating particle makes with the target material. Secondary particles
can cause lattice damages. The charged secondary particles can increase the charge on
different surfaces and inside materials.

If charges are built up inside capacitors, which have a slow decay time, radiation
induced dielectric charging can occur (Frederickson, 1980). High energy radiation can
charge dielectric material to the electric field breakdown level.

Radiation through semiconductors causes electron and hole pairs along the path
of the penetrating particle. The extra charges in the semiconductor can cause the com-
ponent to fail. The generic name for events following a single high-energy particle im-
pact is single event phenomenon (SEP) or single event effect (SEE). There are three
classes of SEPs: single event upset (SEU), single event latch-up and single event burn-
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out (SEB) (Hastings, 1995). A single event upset is a change in state of a digital circuit
due to a high energy particle. A single event latch-up occurs when, instead of a bit flip,
the circuit hangs and a reset has to be made. A single event burnout occurs when the
circuit fails permanently due to the high energy particle.

Single event upsets (SEUs) on LEO satellites often occur in or near the South
Atlantic Anomaly (SAA). SEUs are anti-correlated with solar activity except for strong
solar events, but some of the more intense solar events generate high energy particles,
making it more complicating to predict SEUs. The SEU probability is also related to the
sensitive area (Lauriente and Vampola, 1996) and to the types of electronic devices.

The high-energy particles from cosmic rays can be predicted statistically but in-
dividual impacts are random (later seen as SEUs). Solar outburst effects can be pre-
dicted a few hours or days ahead, if adequate data and modelling are available which
also can cause SEUs.

Dust and debris interaction
At geostationary distances the main debris are of natural origin. In low-earth orbit the
population of man-made micrometer debris are comparable to natural particles. De-
pending on density, relative velocity and size debris can contaminate spacecraft, punc-
ture insulators or even completely demolish satellites. Small debris can puncture the
surface without directly damaging the spacecraft. Small-sized particles impacting on
surfaces charged by plasma interactions can initiate a discharge.

Meteor showers can cause problem to satellite operation. Not necessarily a me-
teoroid making a hole in the satellite, but rather, from the creation of a plasma, or free
electric charge on the spacecraft. The discharge can cause damage to sensitive
electronic circuits on board the spacecraft, and ultimately cause the spacecraft to fail.
The first assumed case of a satellite being lost by a meteoroid came in 1993. The
Olympus communications satellite was reported being damaged by a meteor strike
(1993 Perseid meteor shower) and was lost as a result of an electrical failure.  The ESA
press release from 26 August tells. "As indicated in the [earlier] press release of 17
August, 1993, service from the Agency's experimental OLYMPUS satellite was
interrupted during the night of 11/12 August when, for reasons which are not yet
understood, the satellite lost earth pointing attitude and began spinning. This event, and
the subsequent recovery actions, used the last few kilograms of fuel remaining on the
satellite. An assessment of the situation indicated that it would be impossible to re-
establish service. It has therefore been decided that the Olympus mission should be
terminated and the satellite removed from the geostationary orbital ring."

3.2.4. Anomalies and orbits

The types of anomalies vary with orbit (Vampola, 1994), but because the space is not in
a steady state, the environment may also change considerably on the same orbit as a
function of time, or in different places along the orbit. For example a solar proton event
can create a radiation belt at 2 RE lasting for several months (Daly et al., 1994). During
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the high solar activity during the coming years we may expect several of these proton
events which will effect all spacecraft.

On geostationary orbits surface charging occurs near midnight whereas thick di-
electric charging occurs often in early afternoon. SEUs mainly occur if a solar proton
event is in progress and due to cosmic rays. The transition between shadow and sunlight
can cause surface charging due to photoemission.

On low-altitude polar orbits the most pronounced SEUs occur in the auroral oval
and at the South Atlantic Anomaly. Surface charging is usually associated with the au-
roral oval.

Anomalies are not only reported from satellites orbiting the Earth. For the Voy-
ager spacecraft, during close passes of Jupiter, internal electrostatic discharges occurred.
These discharges appear to have resulted from high-energy electron flux with a rather
good correlation with electrons of greater than 10 MeV energy. The Pioneer spacecraft
encountered severe space weather conditions in the Jovian radiation belts, which nearly
destroyed some on-board systems.

Independent of orbit, solar proton events can degrade the solar panels of satel-
lites simultaneously causing reduction in the power output. Intense events can cause
sensor failure or loss of the satellite control.

Examples of anomalies that have occurred on spacecraft at different locations
and times are given in Table 3.1. The anomalies range from harmless SEU to total loss
of spacecraft. The orbits of the satellites range from low-earth orbit to geostationary, but
also interplanetary missions are included.

3.2.5. Spacecraft Design

Most spacecraft are designed to have the interior shielded from the surrounding plasma
and a wide variety of protections against anomalies. These include shunt diodes for
protecting solar cells, filters and diodes to prevent discharges from influencing internal
and components and circuits which are SEU and discharge resistant (Kalweit, 1981)
and/or constructed with error corrections and latch-up protection.

To avoid potential differences conducting materials are used. If dielectric mate-
rials are on the outside they are usually coated with e.g., indium tin oxide (Garrett,
1981). In some scientific experiments active control of potential is established using ion
or electron gun.

Spacecraft have been launched with a smaller spacecraft attached by a fibre.
These tethered spacecraft are designed to interact with the plasma environment for cur-
rent generation or thrust, in some cases simply to probe the properties of the plasma.
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Spacecraft Time Comment Reference
DSP Anomalies associated with >1.2 MeV electrons Vampola, 1994
SCATHA Internal discharges associated with outer radiation

belt
Garrett and
Whittlesey, 1996

ATS 5 and ATS 6 Charged to 10 kV in eclipse at GEO SMASS Report
NOAA spacecraft from 1971 Contains 2779 events from 1971to 1988 Wilkinson, 1994
Goddard space-
craft

1993-1995 More than 400 anomalies Remez and
McLeod, 1996;
Walter, 1995

Voyager 1 Power-on resets Leung et al., 1986
Pioneer Severe space weather near Jupiter SMASS Report
GPS Clock shift, false commands James et al., 1994
Intelsat 3 and 4 Spin up James et al., 1994
GOES 2 Lauriente et al., ,

1996, 1998
GOES 3 Upsets
GOES 4 Nov 26, 1982 Instrument failed on arrival of 110-500 MeV protons Vampola 1994
Intelsat K Jan 20 1994 Loss of attitude control in GEO Baker et al. 1994
ANIK E1 and
ANIK E2

Jan 20-21 1994 Loss of attitude control due to high energy electrons Baker et al. 1996

ANIK E1 Mar 26 1996 Array of solar power panels disconnected ISTP Newsletter,
Vol 6, no 2, 1996.

DRA-delta Phantom commands Wrenn and Sims,
1996

CTS Short circuit James et al., 1994
DSCS II Spin up, amplifier gain James et al., 1994
DMSP 7 Charged to 300 V in less than a second- associated

with a sharp drop in ion density
Stevens and Jones,
1995

GOES 5 July 22 1984 Failure during high energetic electron fluxes Baker
DMSP F13 Problems while passing through an aurora Anderson and

Koons, 1996
Hispasat 1A and
1B

Sep 1992 and
July 1993

Selding, 1998

Telstar 401 Jan 11 1997 Failure probably due to coronal mass ejection Anselmo, 1997
Telstar 402 Spacecraft charging Lanzerotti et al.,

1996
Topex/Poseidon Failures due to electrostatic discharges and SEUs

caused by high energy protons
Lauriente and
Vampola 1996

Intelsat 511 Oct 7 1995 Lost Earth lock http://www.astro.l
u.se/~henrik/space
w4b.html

GOES 8 Feb 14 1995 Attitude control difficulty http://www.astro.l
u.se/~henrik/space
w4b.html

TDRSS 1 1988-1991 SEUs anticorrelated with solar cycle Wilkinson 1994
CRRES 1990 674 reported anomalies Violet &

Frederickson 1993
Tempo 2 11 Apr 1997 Temporary power fluctuations. http://www.seds.or

g/spaceviews/9705
15/tech.html

Olympus 11/12 Aug
1993

Affected by the 1993 Perseid meteor shower? See 2.1.5 above

Table 3.1. Some reported spacecraft anomalies
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3.3.    Space physics background of charging and anomalies

3.3.1.  Trapped radiation belt particles

The quasi-dipolar magnetic field of the Earth is capable of confining and trapping large
fluxes of energetic electrons and ions, which bounce back and forth between magnetic
mirror points in northern and southern hemisphere and drift around the Earth. As nega-
tive charges drift eastward, and positive westward, this motion produces a westward
current encircling the Earth. In the dipolar region, particles can be stably trapped for
extended periods, even years, as was demonstrated in connection with atmospheric nu-
clear tests. The inner Van Allen radiation belt consists mainly of energetic protons,
whereas the outer belt hosts mostly energetic electrons. While the inner belt is quite sta-
ble, the outer belt can be quite variable both in intensity and radial extent. The energetic
(tens of keV to many MeV) electron and ion populations, at variable intensity levels, are
always present in the near-Earth space environment.

The most obvious effect on Earth-orbiting spacecraft is the radiation dose on
satellites traversing the trapped radiation belts. The almost stable inner radiation zones
have been extensively modelled in the past (e.g., the NASA AE8 and AP8 models al-
though there are well-known shortcomings in these models). The environment obvi-
ously is a major contributor to operational problems, but evaluation of the risk is possi-
ble (see, Chapter 5). Although many problems could traditionally be accounted for by
radiation hardening of the spacecraft components, there is a drive to use advanced com-
ponents that are more sensitive to radiation effects. The radiation also causes interfer-
ence in sensors that cannot always be shielded against radiation. In addition, radiation
effects to the growing astronaut population have to be very carefully monitored.

Intense long-term exposure to high-energy proton fluxes, particularly in the in-
ner radiation belt, produces crystal-lattice structure damage in solid state devices, which
can become completely inoperative after a certain integrated dose. The effects of heav-
ily ionising radiation on electronics have been extensively investigated, and models for
the damage as a function of fluence are available.

3.3.2.  Magnetospheric substorms

Magnetospheric substorms are large-scale dynamic events in the magnetosphere, which
lead to injections of energetic (tens to hundreds of keV) electrons and ions into the inner
magnetosphere as well as to a global reconfiguration of the magnetospheric magnetic
field. Substorms are well correlated with the orientation of the interplanetary magnetic
field; they are known to occur after a period of southward interplanetary magnetic field
(IMF) when part of the solar wind energy has been loaded into the magnetosphere. Un-
der average conditions there are several isolated substorm events per day. The energetic
particle populations created during substorms obviously constitute a quasi-continuous
hazard for the spacecraft. Furthermore, substorms are associated with strong iono-
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spheric currents at auroral latitudes, which in turn can cause problems to the high-lati-
tude power lines and communication systems.

During magnetospheric substorms the plasma density around a geostationary
satellite may drop several orders of magnitude. The energetic electrons can then charge
insulated surfaces negatively to several kV, especially in eclipse. Negative charging can
also become a problem when the spacecraft is immersed within an auroral electron
beam, which cannot be compensated by photoelectrons. This is a problem especially in
eclipse. The risk for this effect is also strongly enhanced during substorm activity when
the electron beams are strongest and most frequent. These kind of charging events are
discussed in Chapter 4 below.

Magnetospheric substorms and storms create significant fluxes of field-aligned
energetic (tens of keV) particles (mainly electrons), which precipitate into the auroral
regions encircling the magnetic poles. At the same time the ionospheric currents in the
auroral region enhance and may exhibit strong temporal variations. Transformers in the
high-voltage electric transmission lines can be saturated by the current induced by the
changes in the local magnetic field caused by ionospheric currents. The saturation can
lead to overloading, overheating, or false relay tripping in the transformers, or distur-
bances in the reactive power balance of the transmission lines. This is a risk mostly in
Fenno-Scandia and Canada, but the effects can reach lower latitudes during strong dis-
turbances. Also the increasingly complicated interconnectivity of the power distribution
systems increases the risk of propagation of the effects in the network.

Oil or natural gas pipelines are also affected by the changing geomagnetic con-
ditions, as currents induced between the pipe and earth cause corrosion. To protect the
pipes, they are kept at a potential lower than that of the surrounding earth in order to
prevent current flow from the pipe to earth.

3.3.3.  Coronal mass ejections and geomagnetic storms

Large, non-recurrent geomagnetic storms develop as a consequence of aperiodic solar
disturbances, such as coronal mass ejections (CME). These are large expulsions of ma-
terial from the Sun, usually associated with solar prominences and flares. Fast CMEs
can be thought of as large plasma blobs moving rapidly outward from the Sun. The
rapid motion through the ambient solar wind leads to a forward shock wave in front of
the CME. The interplanetary magnetic field is draped over the CME, which creates a
strong northward or southward magnetic fields ahead of the CME. A strong southward
IMF, combined with the high velocity of the structure, constitute an efficient driver for
magnetospheric activity.

Major geomagnetic storms cause strong distortion of the geomagnetic field as
well as hours or days of hot plasma enhancements in the outer trapping region. These
injected particles strongly enhance the ring current encircling the Earth. The ring current
intensity can be monitored by ground-based magnetometers at low-latitudes: The Dst
index composed of data from several stations around the world is an approximate meas-
ure of the total ring current energy content. It has been shown that the ring current usu-
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ally decays in a time scale of 2–10 hours. Radiation belt particles can also be monitored
by low-altitude, polar-orbiting satellites equipped with energetic particle sensors. These
have shown that storm-generated populations can last for weeks or even months.

Large interplanetary shock waves driven by CMEs can also have pronounced ef-
fects in the inner magnetosphere, causing strong particle acceleration on a time scale of
minutes. Note that the acceleration during storms typically reaches higher energies than
during substorms. The compression and relaxation of the Earth's magnetic field caused
by the arrival of the shock can lead to strong, highly time-variable electric fields, which
can efficiently accelerate electrons in the outer trapping region.

Geomagnetic storms are most frequent before and after solar cycle maxima, and
typically occur much more infrequently during quiet solar conditions.

3.3.4.  High-speed solar wind streams and recurrent storms

Fast solar wind streams, when they interact with the Earth's magnetosphere, cause ac-
celeration of energetic electrons: The lower-energy (below hundreds of keV) particle
fluxes are well-correlated with solar wind velocity variations. These electrons appear as
a product of magnetospheric substorm activity driven by the high-speed solar wind.

The highest energy electrons (several MeV) show a strong recurrence tendency
at the 27-day rotation period of the Sun. These electrons are produced during geomag-
netic storms driven by recurrent high-speed solar wind streams, which occur most often
during times when the coronal holes extend to low latitudes during the declining phase
of the solar cycle. The acceleration mechanism of the MeV electrons in the magneto-
sphere is still unknown, the substorm activity may play a role but the acceleration pro-
cesses are most likely more complicated than the injections at substorm onset (Blake et
al., 1997).

The strong driving of the solar wind during storms can cause the magnetospheric
boundary to move inside the geostationary orbit. In such cases geostationary satellites
on the dayside lose the shielding the magnetosphere provides against solar wind parti-
cles as well as the guidance of the magnetic field possibly used by orientation magne-
tometers. Furthermore, storms include a series of repetitive and often intense substorms,
posing similar hazards as discussed above.

The very high energy electrons created by storms and especially by the interac-
tions with the high-speed solar wind streams can cause deep dielectric charging of in-
ternal spacecraft components. In this process, the high energy electrons bury themselves
in dielectric materials (such as coaxial cables), giving rise to high electric fields (poten-
tial differences of several kilovolts) in their vicinity until an intense breakdown occurs.

The high-energy (>1 MeV) electron population in the radiation belts intensified
by the storm and high-speed stream-associated activity constitute a primary integrated
dose problem for operation of spacecraft within the inner magnetosphere. They also in-
terfere with sensors, e.g., as flashes in glass and impacts on detectors.
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3.3.5.  Solar particle events

Coronal mass ejections and flares often accelerate particles to very high energies. If
there is a magnetic connection between the disturbance site on the solar surface and the
Earth, the energetic solar protons travelling at speeds close to the speed of light can en-
ter the near-Earth space within tens of minutes, and the peak flux can reach the Earth in
a few hours. These particles constitute the largest risk for missions outside the magneto-
sphere, e.g., Moon and the planets. These very energetic protons also have an access to
the polar cap regions and the outer magnetosphere where the shielding effect of the ge-
omagnetic field is weakest.

Solar energetic particle events (SEPE) may have important effects on passen-
gers, crew, and electronics onboard polar-crossing aircraft and manned spacecraft. Fur-
thermore, the planned orbit of the International Space Station is such that it will be in-
fluenced by solar proton events. The damaging aspects of solar energetic particles on
spacecraft come from fluence effects. Energetic protons and other ions (tens to hundreds
of MeV) are highly penetrating, and one large event can be as damaging as years of op-
eration in the normal near-Earth environment. Particularly vulnerable are systems and
human beings outside the magnetosphere, e.g., on interplanetary flights or on the future
Moon base. An astronaut has less than 20 min to seek cover after an event is observed
on the surface of the Sun.

Solar protons can also penetrate directly into spacecraft sensor systems. The en-
ergy deposition by the protons may cause malfunction in the instruments at times when
the fluxes are sufficiently high. A variety of proton-induced disruptions have been di-
rectly traced to solar energetic particles.

3.3.6. Galactic cosmic rays

The galactic cosmic ray population consists mostly of protons and alpha particles, but it
also contains significant levels of heavier ions. A specific component in the galactic ra-
diation are the so-called anomalous cosmic rays which are singly- or doubly-ionised
heavy ions picked-up from the interstellar neutral matter by the solar wind. These ions
enter the inner solar system after being accelerated at the heliospheric termination
shock. The galactic cosmic ray energy spectrum near the Earth peaks in the energy per
mass range 1-10 GeV/nucleon but the tail of the distribution contains ions of much
higher energies. The integral intensity of galactic cosmic ray particles shows a 5–10%
modulation with the solar cycle.

Galactic cosmic rays are shielded from directly reaching the low-altitude magne-
tosphere by the terrestrial magnetic field and the Earth's surface by the thick neutral at-
mosphere. However, the galactic cosmic rays have a direct access to the polar regions
through the polar cusp and can be transported from there to high equatorial altitudes in
the magnetosphere (e.g., to geostationary orbit).

Ground-based systems at polar latitudes and low-altitude polar-orbiting space-
craft can be strongly affected by galactic cosmic rays. Humans in polar-transiting aero-
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planes or on long-duration spaceflights can be subjected to strong galactic cosmic ray
influence. The most hazardous part of the cosmic rays is the highly ionising and rela-
tively abundant Fe nuclei. These heavy ions can cause severe tissue damage in humans
and major single event upsets in space electronics.

3.4. Outlook for effects

The future society will increasingly rely on space systems. Various positioning applica-
tions are already now based on GPS  and these applications are continuously expanding.
The same happens with communications. Today's geostationary communication sys-
tems will be completed by low-altitude polar telecommunications spacecraft networks
of which the Iridium of the Motorola company was the first to be deployed with more
than 70 satellites. Even larger new type of telecommunications services, based on hun-
dreds of satellites, are expected to take care of wide-band multimedia applications (e.g.,
Celestri of Motorola and Teledesic of Microsoft). Polar orbiting or high-inclination geo-
synchronous satellites cross the low-altitude ends of the radiation belts and auroral re-
gions several times every day and thus encounter hazardous conditions more regularly
than geostationary spacecraft.

In the field of commercial air traffic only the crew and passengers were until re-
cently considered to be threatened by radiation damages. This, of course, remains a
concern, e.g., the airline companies have to take into account the new EU directive con-
cerning radiation doses to workers. In addition, the development toward smaller elec-
tronic devices increases the risks as consequence of single event upsets. These effects
become even more serious if the long-haul flights move to higher altitudes.

With the building of the International Space Station the human presence in space
will grow. The orbit of the space station will routinely cross high fluxes of radiation belt
particles. Space weather events are particularly serious during extravehicular activity
(EVA). In planning of EVAs the space weather forecasts are needed and there must be
effective systems to rapidly warn the astronauts of unexpected SEPEs. The precautions
for SEPEs are of course critical for any long-duration activities outside the magneto-
sphere, be they a trip to Mars or work outside a future lunar base.


